Інформація призначена тільки для фахівців сфери охорони здоров'я, осіб,
які мають вищу або середню спеціальну медичну освіту.

Підтвердіть, що Ви є фахівцем у сфері охорони здоров'я.

Международный неврологический журнал Том 20, №7, 2024

Вернуться к номеру

Посттравматичний стресовий розлад і метаболічний синдром: роль деяких біофакторів у лікуванні

Авторы: Сергієнко В.О. (1), Олійник А.Ю. (1), Павловський Я.І. (1), Крук О.С. (2), Сергієнко О.О. (1)
(1) - Львівський національний медичний університет імені Данила Галицького, м. Львів, Україна
(2) - КНП «Львівське територіальне медичне об’єднання «Багатопрофільна клінічна лікарня інтенсивних методів лікування та швидкої медичної допомоги», м. Львів, Україна

Рубрики: Неврология

Разделы: Справочник специалиста

Версия для печати


Резюме

Посттравматичний стресовий розлад (ПТСР) і метаболічний синдром (МС) часто є коморбідними захворюваннями і мають спільні нейробіологічні та клінічні ознаки. Зокрема, результати метааналізів свідчать про більшу поширеність МС у пацієнтів з ПТСР порівняно із загальною популяцією. Водночас ПТСР також є відомим фактором ризику МС. Цей збіг можна частково пояснити залученням спільних патогенетичних механізмів, характерних для обох станів. Недостатнє споживання та дефіцит окремих біофакторів, зокрема мікроелементів (вітамінів і основних мінералів), пов’язують із підвищеним ризиком МС, цукрового діабету 2-го типу, серцево-судинних захворювань, а дотримання їх фізіологічного вмісту в організмі знижує цей ризик. Харчові добавки з певними біофакторами можуть бути корисними, як доповнення до традиційної терапії, для профілактики та лікування ПТСР і часто коморбідного МС, оскільки ПТСР і МС часто пов’язані із системним дефіцитом низки біофакторів. Цей огляд має на меті обговорити роль окремих біофакторів, зокрема α-ліпоєвої кислоти, вітаміну В1/бенфотіаміну, L-карнітину і ацетил-L-карнітину, ω-3 поліненасичених жирних кислот, кверцетину, магнію, вітамінів D і Е, поліфенолів, у профілактиці/лікуванні коморбідної патології ПТСР і МС, а також проаналізувати нові тенденції та напрямки майбутніх досліджень. Пошук проводився в Scopus, Science Direct (від Elsevier) і PubMed, включно з базами даних Medline. Використані ключові слова «посттравматичний стресовий розлад», «метаболічний синдром», «біофактори». Для виявлення результатів дослідження, які не вдалося знайти під час онлайн-пошуку, використовувався ручний пошук бібліографії публікацій.

Post-traumatic stress disorder (PTSD) and metabolic syndrome (MetS) are often comorbidities and share neurobiological and clinical features. In particular, the results of meta-analyses indicate a higher prevalence of MetS in patients with PTSD compared to the general population. At the same time, PTSD is also a known risk factor for MetS. The involvement of common pathogenetic mechanisms characteristic of both conditions partially explains this coincidence. Insufficient intake and deficiency of certain biofactors, especially micronutrients (vitamins and essential minerals), are associated with an increased risk of MetS, type 2 diabetes mellitus, and cardiovascular diseases, and maintaining their physiological content in the body reduces this risk. Taking nutritional supplements with certain biofactors may help as an adjunct to conventional therapy to prevent and treat PTSD and, more often than not, MetS at the same time. This is because both conditions are linked to deficiencies in a number of biofactors. This review aims to discuss the role of several biofactors, including α-lipoic acid, vitamin B1/benfotiamine, L-carnitine and acetyl-L-carnitine, ω-3 polyunsaturated fatty acids, quercetin, magnesium, vitamins D and E, polyphenols, in the prevention and treatment of PTSD and MetS comorbidity, as well as to analyze new trends and future research directions. We conducted the search in databases such as Scopus, Science Direct (from Elsevier), PubMed, and MEDLINE. The keywords used were “post-traumatic stress disorder”, “metabolic syndrome”, and “biofactors”. We manually searched the bibliography of publications to identify research results that were not found during the online search.


Ключевые слова

посттравматичний стресовий розлад; метаболічний синдром; біофактори; огляд літератури

post-traumatic stress disorder; metabolic syndrome; biofactors; literature review


Для ознакомления с полным содержанием статьи необходимо оформить подписку на журнал.


Список литературы

1. Vancampfort D, Rosenbaum S, Ward PB, et al. Type 2 diabetes among people with posttraumatic stress disorder: systematic review and meta-analysis. Psychosom Med. 2016 May;78(4):465-473. doi: 10.1097/ PSY.0000000000000297.
2. Edmondson D, von Känel R. Post-traumatic stress disorder and cardiovascular disease. Lancet Psychiatry. 2017 Apr;4(4):320-329. doi: 10.1016/S2215-0366(16)30377-7.
3. Bartoli F, Crocamo C, Carrà1 G. Metabolic dysfunctions in people with post-traumatic stress disorder. J Psychopathol. 2020;26(1):85-91. doi: 10.36148/2284-0249-372.
4. Aaseth J, Roer GE, Lien L, Bjrklund G. Is there a relationship between PTSD and complicated obesity? A review of the literature. Biomed Pharmacother. 2019 Sep;117:108834. doi: 10.1016/j. biopha.2019.108834.
5. Michopoulos V, Powers A, Gillespie CF, Ressler KJ, Jovanovic T. Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and Beyond. Neuropsychopharmacology. 2017 Jan;42(1):254-270. doi: 10.1038/npp.2016.146.
6. Serhiyenko A, Baitsar M, Sehin V, Serhiyenko L, Kuznets V, Serhiyenko V. Post-traumatic stress disorder, insomnia, heart rate variability and metabolic syndrome (narrative review). Proc Shevchenko Sci Soc Med Sci. 2024 Jun;73(1):1-10. doi: 10.25040/ntsh2024.01.07.
7. Kibler JL, Ma M, Tursich M, et al. Cardiovascular risks in relation to posttraumatic stress severity among young trauma-exposed women. J Affect Disord. 2018 Dec 1;241:147-153. doi: 10.1016/j.jad.2018.08.007.
8. Serhiyenko VA, Sehin VB, Serhiyenko LM, Serhiyenko AA. Post-traumatic stress disorder, metabolic syndrome, and the autonomic nervous system. Endokrynologia. 2023 Dec;28(4):377-392. doi: 10.31793/1680-1466.2023.28-4.377.
9. Somvanshi PR, Mellon SH, Flory JD, et al. PTSD systems biology consortium. Mechanistic inferences on metabolic dysfunction in posttraumatic stress disorder from an integrated model and multiomic analysis: role of glucocorticoid receptor sensitivity. Am J Physiol Endocrinol Metab. 2019 Nov 1;317(5):E879-898. doi: 10.1152/ajpendo.00065.2019.
10. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (DSM-5). 5th ed. Washington: American Psychiatric Pub; 2013. 280 p. doi: 10.1176/appi.books.9780890425596.
11. Mellon SH, Bersani FS, Lindqvist D, et al. Metabolomic analysis of male combat veterans with post traumatic stress disorder. PLoS One. 2019 Mar 18;14(3):e0213839. doi: 10.1371/journal.pone.0213839.
12. Ames BN. Prolonging healthy aging: Longevity vitamins and proteins. Proc Natl Acad Sci USA. 2018 Oct 23;115(43):10836-10844. doi: 10.1073/pnas.1809045115.
13. Frank J, Kisters K, Stirban OA, et al. The role of biofactors in the prevention and treatment of age-related diseases. Biofactors. 2021 Jul;47(4):522-550. doi: 10.1002/biof.1728.
14. Serhiyenko V, Holzmann K, Holota S, et al. An exploratory study of physiological and biochemical parameters to identify simple, robust and relevant biomarkers for therapeutic interventions for PTSD: Study rationale, key elements of design and a context of war in Ukraine. Proc Shevchenko Sci Soc Med Sci 2022 Dec;69(2):1-12. doi: 10.25040/ntsh2022.02.14].
15. Wolf EJ, Schnurr PP. PTSD-related cardiovascular disease and accelerated cellular aging. Psychiatr Ann. 2016;46:527-532. doi: 10.3928/00485713-20160729-01.
16. Oroian BA, Ciobica A, Timofte D, Stefanescu C, Serban IL. New metabolic, digestive, and oxidative stress-related manifestations associated with posttraumatic stress disorder. Oxid Med Cell Longev. 2021 Dec 20;2021:5599265. doi: 10.1155/2021/5599265.
17. Bersani FS, Mellon SH, Lindqvist D, et al. Novel pharmacological targets for combat PTSD-metabolism, inflammation, the gut microbiome, and mitochondrial dysfunction. Mil Med. 2020 Jan 7;185(Suppl 1):311-318. doi: 10.1093/milmed/usz260.
18. Bellavite P. Neuroprotective potentials of flavonoids: experimental studies and mechanisms of action. Antioxidants (Basel). 2023 Jan 27;12(2):280. doi: 10.3390/antiox12020280.
19. Rani M, Aggarwal R, Vohra K. Effect of N-acetylcysteine on metabolic profile in metabolic syndrome patients. Metab Syndr Relat Disord. 2020 Sep;18(7):341-346. doi: 10.1089/met.2020.0017.
20. Aguilar M, Alberti KGMM, Amiel SA, et al. Leitfaden zu typ-2-diabetes mellitus. Guide for type 2 diabetes mellitus (Review). Diabetes und Stoffwechsel. 2000 Mar 20;9(2):104-136. 
21. Serhiyenko VA, Serhiyenko AA. Diabetes mellitus and arterial hypertension. Int J Endocrynol. 2021;17(2):100-113. doi: 10.22141/2224-0721.17.2.2021.230573.
22. Mohamed SM, Shalaby MA, El-Shiek RA, El-Banna HA, Emam SR, Bakr AF. Metabolic syndrome: Risk factors, diagnosis, pathogenesis, and management with natural approaches. Food Chem. Adv. 2023 Dec 23;3:100335. doi: 10.1016/j.focha.2023.100335.
23. Harris WS, Luo J, Pottala JV, et al. Red blood cell polyunsaturated fatty acids and mortality in the Women’s Health Initiative Memory Study. J Clin Lipidol. 2017 Jan-Feb;11(1):250-259.e5. doi: 10.1016/j.jacl.2016.12.013.
24. Tripathi AK, Ray AK, Mishra SK, Bishen SM, Mishra H, Khurana A. Molecular and therapeutic insights of alpha-lipoic acid as a potential molecule for disease prevention. Rev Bras Farmacogn. 2023;33(2):272-287. doi: 10.1007/s43450-023-00370-1.
25. Serhiyenko VA, Serhiyenko LM, Sehin VB, Serhiyenko AA. Effect of alpha-lipoic acid on arterial stiffness parameters in type 2 diabetes mellitus patients with cardiac autonomic neuropathy. Endocr Regul. 2021 Dec 7;55(4):224-233. doi: 10.2478/enr-2021-0024.
26. Salehi B, Berkay Y, Antika G, et al. Insights on the use of α-lipoic acid for therapeutic purposes. Biomolecules. 2019 Aug 9;9(8):356. doi: 10.3390/biom9080356.
27. Gomes MB, Negrato CA. Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases. Diabetol Metab Syndr. 2014 Jul 28;6(1):80. doi: 10.1186/1758-5996-6-80.
28. Guardiola-Márquez CE, Santos-Ramírez MT, Segura-Jiménez ME, Figueroa-Montes ML, Jacobo-Velázquez DA. Fighting obesity-related micronutrient deficiencies through biofortification of agri-food crops with sustainable fertilization practices. Plants (Basel). 2022 Dec 12;11(24):3477. doi: 10.3390/plants11243477.
29. Maguire D, Catchpole A, Sheerins O, et al. The relation between acute changes in the systemic inflammatory response and circulating thiamine and magnesium concentrations after elective knee arthroplasty. Sci Rep. 2021 May 28;11(1):11271. doi: 10.1038/s41598-021-90591-y.
30. Serhiyenko VA, Serhiyenko LM, Sehin VB, Serhiyenko AA. Pathophysiological and clinical aspects of the circadian rhythm of arterial stiffness in diabetes mellitus: A minireview. Endocr Regul. 2022;56(4):284-294. doi: 10.2478/enr-2022-0031.
31. Bozic I, Lavrnja I. Thiamine and benfotiamine: Focus on their therapeutic potential. Heliyon. 2023 Nov 7;9(11):e21839. doi: 10.1016/j.heliyon.2023.e21839.
32. Sambon M, Wins P, Bettendorff L. Neuroprotective effects of thiamine and precursors with higher bioavailability: Focus on benfotiamine and dibenzoylthiamine. Int J Mol Sci. 2021 May 21;22(11):5418. doi: 10.3390/ijms22115418. 
33. Choi M, Park S, Lee M. L-carnitine’s effect on the biomarkers of metabolic syndrome: A systematic review and meta-analysis of randomized controlled trials. Nutrients. 2020 Sep 12;12(9):2795. doi: 10.3390/nu12092795.
34. Al-Dhuayan IS. Biomedical role of L-carnitine in several organ systems, cellular tissues, and COVID-19. Braz J Biol. 2023 Jan 9;82:e267633. doi: 10.1590/1519-6984.267633.
35. Talenezhad N, Mohammadi M, Ramezani-Jolfaie N, Mozaffari-Khosravi H, Salehi-Abargouei A. Effects of L-carnitine supplementation on weight loss and body composition: A systematic review and meta-analysis of 37 randomized controlled clinical trials with dose-response analysis. Clin Nutr ESPEN. 2020 Jun;37:9-23. doi: 10.1016/j.clnesp.2020.03.008.
36. Askarpour M, Hadi A, Miraghajani M, Symonds ME, Sheikhi A, Ghaedi E. Beneficial effects of L-carnitine supplementation for weight management in overweight and obese adults: An updated systematic review and dose-response meta-analysis of rando-mized controlled trials. Pharmacol Res. 2020 Jan;151:104554. doi: 10.1016/j.phrs.2019.104554.
37. Keshani M, Alikiaii B, Askari G, Yahyapoor F, Ferns GA, Bagherniya M. The effects of L-carnitine supplementation on inflammatory factors, oxidative stress, and clinical outcomes in patients with sepsis admitted to the intensive care unit (ICU): Study protocol for a double blind, randomized, placebo-controlled clinical trial. Trials. 2022 Feb 22;23(1):170. doi: 10.1186/s13063-022-06077-3.
38. Virmani MA, Cirulli M. The role of L-carnitine in mitochondria, prevention of metabolic inflexibility and disease initiation. Int J Mol Sci. 2022 Feb 28;23(5):2717. doi: 10.3390/ijms23052717.
39. Bellamine A, Pham TNQ, Jain J, et al. L-carnitine tartrate downregulates the ACE2 receptor and limits SARS-CoV-2 infection. Nutrients. 2021 Apr 14;13(4):1297. doi: 10.3390/nu13041297.
40. Lebda MA, Hashem AS, Taha NM, Mandour AEW, Edres HA. L-carnitine mitigates bisphenol A-induced hepatic toxicity via activation of Nrf2 and inhibition of pro-inflammatory cytokine gene expression in rats. Vet. Arhiv. 2020 Feb;90(1):57-68. doi: 10.24099/vet.arhiv.0438.
41. Elkomy A, Abdelhiee EY, Fadl SE, et al. L-carnitine mitigates oxidative stress and disorganization of cytoskeleton intermediate filaments in cisplatin-induced hepato-renal toxicity in rats. Front Pharmacol. 2020 Sep 29;11:574441. doi: 10.3389/fphar.2020.574441.
42. Kuna RS, Kumar A, Wessendorf-Rodriguez KA, et al. Inter-organelle cross-talk supports acetyl-coenzyme A homeostasis and lipogenesis under metabolic stress. Sci Adv. 2023 May 3;9(18):eadf0138. doi: 10.1126/sciadv.adf0138.
43. Magi S, Preziuso A, Piccirillo S, et al. The neuroprotective effect of L-carnitine against glyceraldehyde-induced metabolic impairment: Possible implications in Alzheimer’s Disease. Cells. 2021 Aug 17;10(8):2109. doi: 10.3390/cells10082109.
44. Bigio B, Azam S, Mathé AA, Nasca C. The neuropsychopharmacology of acetyl-L-carnitine (LAC): basic, translational and therapeutic implications. Discov Ment Health. 2024 Jan 2;4(1):2. doi: 10.1007/s44192-023-00056-z.
45. da Silva LE, de Oliveira MP, da Silva MR, et al. L-carnitine and acetyl-L-carnitine: A possibility for treating alterations induced by obesity in the central nervous system. Neurochem Res. 2023 Nov;48(11):3316-3326. doi: 10.1007/s11064-023-04000-z.
46. Alzoubi KH, Shatnawi AF, Al-Qudah MA, Alfaqih MA. Vitamin C attenuates memory loss induced by post-traumatic stress like behavior in a rat model. Behav Brain Res. 2020 Feb 3;379:112350. doi: 10.1016/j.bbr.2019.112350.
47. Nasca C, Bigio B, Lee FS, et al. Acetyl-L-carnitine deficiency in patients with major depressive disorder. Proc Natl Acad Sci USA. 2018 Aug 21;115(34):8627-8632. doi: 10.1073/pnas.1801609115.
48. Post RM. Myriad of implications of acetyl-L-carnitine deficits in depression. Proc Natl Acad Sci USA. 2018 Aug 21;115(34):8475-8477. doi: 10.1073/pnas.1811389115.
49. Albracht-Schulte K, Kalupahana NS, Ramalingam L, et al. Omega-3 fatty acids in obesity and metabolic syndrome: a mechanistic update. J Nutr Biochem. 2018 Aug;58:1-16. doi: 10.1016/j.jnutbio.2018.02.012.
50. Jang H, Park K. Omega-3 and omega-6 polyunsaturated fatty acids and metabolic syndrome: A systematic review and meta-analysis. Clin Nutr. 2020 Mar;39(3):765-773. doi: 10.1016/j.clnu.2019.03.032.
51. Serhiyenko VA, Serhiyenko LM, Serhiyenko AA. Omega-3 polyunsaturated fatty acids in the treatment of diabetic cardiovascular autonomic neuropathy: A review. In: Moore SJ, editor. Omega-3: Dietary sources, biochemistry and impact on human health. New York: Nova Science Publishers; 2017: 79-154 pp. 
52. Bäck M, Latini R. Metabolic syndrome cardiovascular risk prevention by omega-3 polyunsaturated fatty acids. Eur Heart J Open. 2023 Nov 12;3(6):oead115. doi: 10.1093/ehjopen/oead115.
53. Bozzatello P, De Rosa ML, Rocca P, Bellino S. Effects of omega 3 fatty acids on main dimensions of psychopathology. Int J Mol Sci. 2020 Aug 21;21(17):6042. doi: 10.3390/ijms21176042.
54. Alquraan L, Alzoubi KH, Hammad H, Rababa’h SY, Mayyas F. Omega-3 fatty acids prevent post-traumatic stress disorder-induced memory impairment. Biomolecules. 2019 Mar 12;9(3):100. doi: 10.3390/biom9030100.
55. Gregório BM, De Souza DB, de Morais Nascimento FA, Pereira LM, Fernandes-Santos C. The potential role of antioxidants in metabolic syndrome. Curr Pharm Des. 2016;22(7):859-869. doi: 10.2174/1381612822666151209152352.
56. Kábelová A, Malínská H, Marková I, Hűttl M, Chylíková B, Šeda O. Quercetin supplementation alters adipose tissue and hepatic transcriptomes and ameliorates adiposity, dyslipidemia, and glucose intolerance in adult male rats. Front Nutr. 2022 Sep 29;9:952065. doi: 10.3389/fnut.2022.952065.
57. Sharebiani H, Mokaram M, Mirghani M, Fazeli B, Stanek A. The effects of antioxidant supplementation on the pathologic mechanisms of metabolic syndrome and cardiovascular disease development. Nutrients. 2024 May 27;16(11):1641. doi: 10.3390/nu16111641.
58. Hosseini A, Razavi BM, Banach M, Hosseinzadeh H. Quercetin and metabolic syndrome: A review. Phytother Res. 2021 Oct;35(10):5352-5364. doi: 10.1002/ptr.7144.
59. Gouveia HJCB, Urquiza-Martínez MV, Manhães-de-Castro R, et al. Effects of the treatment with flavonoids on metabolic syndrome components in humans: A systematic review focusing on mechanisms of action. Int J Mol Sci. 2022 Jul 28;23(15):8344. doi: 10.3390/ijms23158344.
60. Cruz KJC, de Oliveira ARS, Fontenelle LC, et al. Relationship between zinc, selenium, and magnesium status and markers of metabolically healthy and unhealthy obesity phenotypes. Biol Trace Elem Res. 2024 Aug;202(8):3449-3464. doi: 10.1007/s12011-023-03938-z.
61. Pickering G, Mazur A, Trousselard M, et al. Magnesium status and stress: The vicious circle concept revisited. Nutrients. 2020 Nov 28;12(12):3672. doi: 10.3390/nu12123672.
62. Opanković A, Milovanović S, Radosavljević B, et al. Correlation of ionized magnesium with the parameters of oxidative stress as potential biomarkers in patients with anxiety and depression: A pilot study. Dose Response. 2022 Jul 21;20(3):15593258221116741. doi: 10.1177/15593258221116741.
63. Al-Oanzi ZH, Alenazy FO, Alhassan HH, et al. The role of vitamin D in reducing the risk of metabolic disturbances that cause cardiovascular diseases. J Cardiovasc Dev Dis. 2023 May 11;10(5):209. doi: 10.3390/jcdd10050209.
64. Ramasamy I. Vitamin D metabolism and guidelines for vitamin D supplementation. Clin Biochem Rev. 2020 Dec;41(3):103-126. doi: 10.33176/AACB-20-00006.
65. Berridge MJ. Vitamin D cell signalling in health and disease. Biochem Biophys Res Commun. 2015 Apr 24;460(1):53-71. doi: 10.1016/j.bbrc.2015.01.008.
66. Melguizo-Rodríguez L, Costela-Ruiz VJ, García-Recio E, De Luna-Bertos E, Ruiz C, Illescas-Montes R. Role of vitamin D in the metabolic syndrome. Nutrients. 2021 Mar 3;13(3):830. doi: 10.3390/nu13030830.
67. Menon V, Kar SK, Suthar N, Nebhinani N. Vitamin D and depression: A critical appraisal of the evidence and future directions. Indian J Psychol Med. 2020 Jan 6;42(1):11-21. doi: 10.4103/IJPSYM.IJPSYM_160_19.
68. Raise-Abdullahi P, Meamar M, Vafaei AA, et al. Hypothalamus and post-traumatic stress disorder: A review. Brain Sci. 2023 Jun 29;13(7):1010. doi: 10.3390/brainsci13071010.
69. Akpınar Ş, Karadağ MG. Is vitamin D important in anxiety or depression? What is the truth? Curr Nutr Rep. 2022 Dec;11(4):675-681. doi: 10.1007/s13668-022-00441-0.
70. Hung M, Birmingham WC, Ocampo M, Mohajeri A. The role of vitamin D in cardiovascular diseases. Nutrients. 2023 Aug 11;15(16):3547. doi: 10.3390/nu15163547.
71. AlGhamdi SA. Effectiveness of vitamin D on neurological and mental disorders. Diseases. 2024 Jun 20;12(6):131. doi: 10.3390/diseases12060131.
72. Terock J, Hannemann A, Van der Auwera S, et al. Posttraumatic stress disorder is associated with reduced vitamin D levels and functional polymorphisms of the vitamin D binding-protein in a population-based sample. Prog Neuropsychopharmacol Biol Psychiatry. 2020 Jan 10;96:109760. doi: 10.1016/j.pnpbp.2019.109760.
73. Ye X, Zhou Q, Ren P, Xiang W, Xiao L. The synaptic and circuit functions of vitamin D in neurodevelopment disorders. Neuropsychiatr Dis Treat. 2023 Jul 3;19:1515-1530. doi: 10.2147/NDT.S407731.
74. Mirmiran P, Hosseini-Esfahani F, Esfandiar Z, Hosseinpour-Niazi S, Azizi F. Associations between dietary antioxidant intakes and cardiovascular disease. Sci Rep. 2022 Jan 27;12(1):1504. doi: 10.1038/s41598-022-05632-x.
75. Batista-Jorge GC, Barcala-Jorge AS, Lelis DF, et al. Resveratrol effects on metabolic syndrome features: A systematic review and meta-analysis. Endocrines. 2024 May;5(2):225-243. doi: 10.3390/endocrines5020016.

Вернуться к номеру